Data Scientist
atSiam Commercial Bank (SCB)Job Description
- Apply statistical and machine learning methods to large, complex data sets to draw insights and provide actionable recommendations.
- Solve complex problems on both technical and business sides using advanced analytical methods.
- Work with Engineering teams to implement end-to-end process from model development to testing, validation, and deployment
- Research and develop new quantitative models and frameworks to enhance the companyâs data science capability
- Bachelorâs degree in Engineering, Computer Science, Math, Physics, Statistics or other areas that are highly quantitative
- Experience with statistical programming languages (e.g., Python, R, pandas) and database software (e.g., SQL, PySpark)
- Knowledge in statistics (e.g., hypothesis testing, regression) and machine learning
- Strong analytical problem-solving capabilities
- Masterâs or PhD degree in a quantitative discipline
- Experience applying machine learning and statistical methods to large datasets
- Solid understanding of advanced statistics and machine learning practices.
- Experience in one or more specialized machine learning areas (e.g., NLP, deep learning, recommendation systems, reinforcement learning)
- Outstanding coding skills or software development background.
- Ability to think independently and communicate complex ideas to less technical persons
- Excellent command of English in both verbal and written forms
Salary
- Negotiable
Job type
- Full-time
Company overview
Siam Commercial Bank is the first bank in Thailand that was informally established in 1904 as "Book Club". According to the Bank of Thailand, it is Thailand's fourth largest commercial bank in terms of total assets, deposits, and loans.
Why join us: āļŠāļĄāļąāļāļĢāļāļķāļāļāļēāļāļāļāļēāļāļēāļĢāđāļāļĒāļāļēāļāļīāļāļĒāđāđāļāļ·āđāļāđāļĢāļīāđāļĄāļāđāļāļāļēāļāļĩāļāļāļēāļĢāļāļēāļāļāļāļāļāļļāļāļāđāļ§āļĒāļāļēāļĢāļāđāļāļŦāļēāļ§āđāļēāļāļļāļāđāļāđāļāđāļāđāļĢāļ·āđāļāļāļāļ°āđāļĢ āļāļĩāļāļāļąāđāļāļĒāļąāļāđāļāđāļĢāļąāļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāđāļāļāļēāļĢāļāļģāļāļēāļāļāđāļēāļāļāļāļēāļāļēāļĢāļāļĩāļāļāđāļ§āļĒ āđāļāļĢāđāļāļĢāļĄāļāļķāļāļāļēāļāļāļāļāļāļāļēāļāļēāļĢāđāļāļĒāļāļēāļāļīāļāļĒāđāļāļ°āđāļŦāđāđāļāļāļēāļŠāļāļąāļāļĻāļķāļāļĐāļēāļāļĩāļŠāļļāļāļāđāļēāļĒāđāļāđāļĢāļąāļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļēāļĢāļāļģāļāļēāļāđāļāļāļĨāļēāļāļāļĩāđāļĄāļĩāļāļēāļĢāđāļāđāļāļāļąāļāļĄāļēāļāļāļĩāđāļŠāļļāļāđāļāļāļ§āļĩāļāđāļāđāļāļĩāļĒ āđāļāļĢāđāļāļĢāļĄāļāļķāļāļāļēāļāļāļāļāđāļĢāļēāļāļ°āļĄāļĩāļĢāļ° ... Read more
Benefits
- Professional development
- Learning & Development Opportunities
- Five-day work week
- Performance bonus