Your Challenge


As a Data Engineer, you will work closely with a multidisciplinary Agile team to build high-quality data pipelines driving analytic solutions. These solutions will generate insights from our connected data, enabling Mango to advance the data-driven decision-making capabilities of our enterprise. This role requires a deep understanding of data architecture, data engineering, data analysis, reporting, and a basic understanding of data science techniques and workflows. The ideal candidate is a skilled data / software engineer with experience creating data products supporting analytic solutions. The ideal candidate is a skilled data/software engineer with experience creating data products supporting analytic solutions. They are an Agile learner, possess strong problem-solving skills, work as part of a technical, cross-functional analytics team, and want to solve complex data problems and deliver the insights to enable analytics strategy.

  • Design, develop, optimize, and maintain data architecture and pipelines that adhere to ETL principles and business goals
  • Create data products for analytics and data scientist team members to improve their productivity
  • Lead the evaluation, implementation and deployment of emerging tools and process for analytic data engineering in order to improve our productivity as a team
  • Develop and deliver communication and education plans on analytic data engineering capabilities, standards, and processes
Requirements
  • Previous experience as a data engineer or in a similar role
  • Technical expertise with data models, data mining, and segmentation techniques
  • Knowledge of programming languages (e.g. Java and Python)
  • Hands-on experience with SQL database design using Hadoop or BigQuery and experience with a variety of relational, NoSQL, and cloud database technologies
  • Great numerical and analytical skill
  • Worked with BI tools such as Tableau, Power BI
  • Conceptual knowledge of data and analytics, such as dimensional modeling, ETL, reporting tools, data governance, data warehousing, structured and unstructured data.
āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:5000-10000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāļ„āđ‰āļēāļŠāđˆāļ‡
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.cpaxtra.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:n/a

CP Axtra āđ„āļĄāđˆāđ„āļ”āđ‰āđ€āļ›āđ‡āļ™āđ€āļžāļĩāļĒāļ‡āļšāļĢāļīāļĐāļąāļ— āđāļ•āđˆāđ€āļĢāļēāđ€āļ›āđ‡āļ™āļāļēāļĢāļ›āļāļīāļ§āļąāļ•āļīāļ§āļ‡āļāļēāļĢāļ„āđ‰āļēāļŠāđˆāļ‡āđāļĨāļ°āļ„āđ‰āļēāļ›āļĨāļĩāļ āđ€āļāļīāļ”āļ—āļĩāđˆāļāļĢāļļāļ‡āđ€āļ—āļžāļŊ āđāļĨāļ°āļ•āļ­āļ™āļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļŦāļ™āļķāđˆāļ‡āļ‚āļ­āļ‡āļ„āļĢāļ­āļšāļ„āļĢāļąāļ§ CP ALL āļ­āļĒāđˆāļēāļ‡āļ āļēāļ„āļ āļđāļĄāļīāđƒāļˆ āļāļēāļĢāđ€āļ”āļīāļ™āļ—āļēāļ‡āļ‚āļ­āļ‡āđ€āļĢāļēāļˆāļēāļ Siam Makro āļŠāļđāđˆ CP Axtra āđ„āļ”āđ‰āļ–āļđāļāļāļģāļŦāļ™āļ”āļ”āđ‰āļ§āļĒāļ™āļ§āļąāļ•āļāļĢāļĢāļĄāđāļĨāļ°āļ„āļ§āļēāļĄāļĄāļļāđˆāļ‡āļĄāļąāđˆāļ™āļŠāļđāđˆāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ€āļĨāļīāļĻ

āļ™āļĩāđˆāļ„āļ·āļ­āļŠāļīāđˆāļ‡āļ—āļĩāđˆāļ—āļģāđƒāļŦāđ‰āđ€āļĢāļēāđāļ•āļāļ•āđˆāļēāļ‡:

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āđ€āļ‚āļ•āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™: āļšāļēāļ‡āļāļ°āļ›āļī
āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: CP Axtra
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđāļšāļšāļžāļ™āļąāļāļ‡āļēāļ™
  • āļāļķāļāļ­āļšāļĢāļĄ
  • āļŠāđˆāļ§āļ™āļĨāļ”āļžāļ™āļąāļāļ‡āļēāļ™
  • āđ‚āļ„āļĢāļ‡āļāļēāļĢāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāļ„āļļāļ“āļ āļēāļžāļŠāļĩāļ§āļīāļ•

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđāļ—āļĢāļ™āļ”āļēāļĢāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļšāļĢāļīāļ”āļˆāđŒāļ—āļđāđ„āļ‹āļ™āđˆāļēāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ­āđ€āļŠāļĩāđˆāļĒāļ™ āđ‚āļ­āđ€āļ­āļ‹āļīāļŠāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ—āļ„āđ‚āļ™ āđ€āļšāļīāļĢāđŒāļ” āļˆāļģāļāļąāļ”