Your Challenge
As a Data Engineer, you will work closely with a multidisciplinary Agile team to build high-quality data pipelines driving analytic solutions. These solutions will generate insights from our connected data, enabling Mango to advance the data-driven decision-making capabilities of our enterprise. This role requires a deep understanding of data architecture, data engineering, data analysis, reporting, and a basic understanding of data science techniques and workflows. The ideal candidate is a skilled data / software engineer with experience creating data products supporting analytic solutions. The ideal candidate is a skilled data/software engineer with experience creating data products supporting analytic solutions. They are an Agile learner, possess strong problem-solving skills, work as part of a technical, cross-functional analytics team, and want to solve complex data problems and deliver the insights to enable analytics strategy.
- Design, develop, optimize, and maintain data architecture and pipelines that adhere to ETL principles and business goals
- Create data products for analytics and data scientist team members to improve their productivity
- Lead the evaluation, implementation and deployment of emerging tools and process for analytic data engineering in order to improve our productivity as a team
- Develop and deliver communication and education plans on analytic data engineering capabilities, standards, and processes
- Previous experience as a data engineer or in a similar role
- Technical expertise with data models, data mining, and segmentation techniques
- Knowledge of programming languages (e.g. Java and Python)
- Hands-on experience with SQL database design using Hadoop or BigQuery and experience with a variety of relational, NoSQL, and cloud database technologies
- Great numerical and analytical skill
- Worked with BI tools such as Tableau, Power BI
- Conceptual knowledge of data and analytics, such as dimensional modeling, ETL, reporting tools, data governance, data warehousing, structured and unstructured data.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļĩāđāļāļģāđāļāđāļ
- āđāļĄāđāļĢāļ°āļāļļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļąāđāļāļāđāļģ
āđāļāļīāļāđāļāļ·āļāļ
- āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
āļŠāļēāļĒāļāļēāļ
- āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
āļāļĢāļ°āđāļ āļāļāļēāļ
- āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļĩāđāļĒāļ§āļāļąāļāļāļĢāļīāļĐāļąāļ
CP Axtra āđāļĄāđāđāļāđāđāļāđāļāđāļāļĩāļĒāļāļāļĢāļīāļĐāļąāļ āđāļāđāđāļĢāļēāđāļāđāļāļāļēāļĢāļāļāļīāļ§āļąāļāļīāļ§āļāļāļēāļĢāļāđāļēāļŠāđāļāđāļĨāļ°āļāđāļēāļāļĨāļĩāļ āđāļāļīāļāļāļĩāđāļāļĢāļļāļāđāļāļāļŊ āđāļĨāļ°āļāļāļāļāļĩāđāđāļāđāļāļŠāđāļ§āļāļŦāļāļķāđāļāļāļāļāļāļĢāļāļāļāļĢāļąāļ§ CP ALL āļāļĒāđāļēāļāļ āļēāļāļ āļđāļĄāļīāđāļ āļāļēāļĢāđāļāļīāļāļāļēāļāļāļāļāđāļĢāļēāļāļēāļ Siam Makro āļŠāļđāđ CP Axtra āđāļāđāļāļđāļāļāļģāļŦāļāļāļāđāļ§āļĒāļāļ§āļąāļāļāļĢāļĢāļĄāđāļĨāļ°āļāļ§āļēāļĄāļĄāļļāđāļāļĄāļąāđāļāļŠāļđāđāļāļ§āļēāļĄāđāļāđāļāđāļĨāļīāļĻ āļāļĩāđāļāļ·āļāļŠāļīāđāļāļāļĩāđāļāļģāđāļŦāđāđāļĢāļēāđāļāļāļāđāļēāļ:āļāđāļēāļāļāđāļ
āļŠāļ§āļąāļŠāļāļīāļāļēāļĢ
- āđāļāļĢāļ·āđāļāļāđāļāļāļāļāļąāļāļāļēāļ
- āļāļķāļāļāļāļĢāļĄ
- āļŠāđāļ§āļāļĨāļāļāļāļąāļāļāļēāļ
- āđāļāļĢāļāļāļēāļĢāļŠāđāļāđāļŠāļĢāļīāļĄāļāļļāļāļ āļēāļāļāļĩāļ§āļīāļ