• Adjust language models that have already been trained for generative AI applications Ensure that the LLMs and pipelines based on LLMs are tuned and released
  • Create and implement LLMs for various content creation jobs Develop and communicate roadmaps for data science projects
  • Design effective agile workflows and manage a cycle of deliverables that meet timeline and resource constraints
  • Serve as a bridge between stakeholders and AI suppliers to facilitate seamless communication and understanding of project requirements.
  • Work closely with external AI suppliers to ensure alignment between project goals and technological capabilities.
  • Identify and gather data sets necessary for AI projects
  • Prior experience in Machine Learning, Deep Learning, and AI algorithm to solve respective business cases and pain points.
  • Prior hands-on experience in data-mining techniques to better understand each pain point and provide insights
  • Able to design and conduct analysis to support product & channel improvement and development
  • Present key findings and recommendations to business counter parties and senior management on project approach and strategic planning


Qualifications:


  • Bachelor degree or higher in Computer Science, Computer Engineering, Information Technology, Management Information System or an IT related field.
  • Native Thai speaker & fluent in English
  • 3+ years of proven experience as a Data Scientist with a focus on project management (Retail or E-Commerce business is preferable).
  • At least 2+ years of relevant experience as an LLM Data Scientist Experience in SQL and Python (Pandas, Numpy, SparkSQL)
  • Ability to manipulate and analyze complex, high-volume, high-dimensionality data from varying sources
  • Experience in Big Data Technologies like Hadoop, Apache Spark, Databrick
  • Experience in machine learning and deep learning (Tensorflow, Keras, Scikit-learn)
  • Good Knowledge of Statistics
  • Experience in Data Visualization (Tableau, PowerBI) is a plus
  • Excellent communication skills with the ability to convey complex findings to non-technical stakeholders
  • Having good attitude toward team working and willing to work hard.


āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļāļēāļĢāļˆāļąāļ”āļāļēāļĢ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:5000-10000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāļ„āđ‰āļēāļŠāđˆāļ‡
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.cpaxtra.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:n/a

CP Axtra āđ„āļĄāđˆāđ„āļ”āđ‰āđ€āļ›āđ‡āļ™āđ€āļžāļĩāļĒāļ‡āļšāļĢāļīāļĐāļąāļ— āđāļ•āđˆāđ€āļĢāļēāđ€āļ›āđ‡āļ™āļāļēāļĢāļ›āļāļīāļ§āļąāļ•āļīāļ§āļ‡āļāļēāļĢāļ„āđ‰āļēāļŠāđˆāļ‡āđāļĨāļ°āļ„āđ‰āļēāļ›āļĨāļĩāļ āđ€āļāļīāļ”āļ—āļĩāđˆāļāļĢāļļāļ‡āđ€āļ—āļžāļŊ āđāļĨāļ°āļ•āļ­āļ™āļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļŦāļ™āļķāđˆāļ‡āļ‚āļ­āļ‡āļ„āļĢāļ­āļšāļ„āļĢāļąāļ§ CP ALL āļ­āļĒāđˆāļēāļ‡āļ āļēāļ„āļ āļđāļĄāļīāđƒāļˆ āļāļēāļĢāđ€āļ”āļīāļ™āļ—āļēāļ‡āļ‚āļ­āļ‡āđ€āļĢāļēāļˆāļēāļ Siam Makro āļŠāļđāđˆ CP Axtra āđ„āļ”āđ‰āļ–āļđāļāļāļģāļŦāļ™āļ”āļ”āđ‰āļ§āļĒāļ™āļ§āļąāļ•āļāļĢāļĢāļĄāđāļĨāļ°āļ„āļ§āļēāļĄāļĄāļļāđˆāļ‡āļĄāļąāđˆāļ™āļŠāļđāđˆāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ€āļĨāļīāļĻ

āļ™āļĩāđˆāļ„āļ·āļ­āļŠāļīāđˆāļ‡āļ—āļĩāđˆāļ—āļģāđƒāļŦāđ‰āđ€āļĢāļēāđāļ•āļāļ•āđˆāļēāļ‡:

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āđ€āļ‚āļ•āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™: āļŠāļ§āļ™āļŦāļĨāļ§āļ‡
āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: CP Axtra
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđāļšāļšāļžāļ™āļąāļāļ‡āļēāļ™
  • āļāļķāļāļ­āļšāļĢāļĄ
  • āļŠāđˆāļ§āļ™āļĨāļ”āļžāļ™āļąāļāļ‡āļēāļ™
  • āđ‚āļ„āļĢāļ‡āļāļēāļĢāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāļ„āļļāļ“āļ āļēāļžāļŠāļĩāļ§āļīāļ•
āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļšāļĢāļīāļĐāļąāļ— āļ‹āļĩāļžāļĩ āđāļ­āđ‡āļāļ‹āđŒāļ•āļĢāđ‰āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) - (āđāļĄāđ‡āļ„āđ‚āļ„āļĢ) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ‹āļ™āļ—āļĢāļąāļĨāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļšāļēāļ‡āļāļ­āļāđāļĢāđ‰āļ™āļŠāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļžāļĩāļžāļĩāđ€āļ­āđ‡āļĄāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV