Banking Analytics Engineer – Automation & Reporting

Work at Infinitas By Krungthai Co., Ltd.

Job Summary
The Data Innovation Team at Infinitas by Krungthai is a centralized data enabler designed to serve both the digital and traditional arms of Krungthai Bank. We focus on providing cutting-edge data solutions, empowering teams with actionable insights, and driving business transformation. We are looking for an Analytics Engineer to join our team, focusing on automation, reporting, and DataOps. This key role will help streamline data pipelines, automate
reporting workflows, and provide high-quality, data-driven insights to enhance decision- making.

Our team responsibilities

o Automation of Analytics Pipelines
- Develop and Maintain Automated Data Pipelines: Build and maintain robust data pipelines for reporting and analytics using cloud-native technologies such as AWS Glue, Redshift, and Lambda.
- Streamline Automation Frameworks: Ensure the high availability, performance, and cost-efficiency of data workflows by adhering to “Zero Ops by Design” principles, ensuring that data pipelines run seamlessly with minimal manual intervention.
- Timely, Accurate Reporting: Automate reporting processes to ensure consistent, accurate, and timely delivery of business insights.

o Advanced Reporting & Analytics
- Reporting Systems Design & Optimization: Design, implement, and optimize reporting systems that deliver actionable insights to key business stakeholders.
- BI Tools & Dashboards: Use visualization tools such as Tableau, Grafana, and AWS Quick Sight to create dynamic, self-service dashboards and reports, empowering teams to make data-driven decisions.

o Data Modeling and Schema Management
- Develop Robust Data Models & Schemas: Design and maintain data models and schemas that support analytics, reporting, and operational needs.
- Single Version of Truth: Ensure consistency, accuracy, and reliability by establishing a "single version of truth," providing a consistent data framework across the organization.

o Quality-as-a-Service Development
- Build Scalable Quality Solutions: Design and maintain "Data/AI Quality-as-a-Service" solutions to monitor data drift, analyze performance metrics, and detect data issues early in the process.
- Zero-Ops Design for Quality Monitoring: Ensure the high availability and performance of quality solutions while aligning with zero-ops design principles, minimizing operational overhead.

o Cross-Functional Collaboration
- Collaborate with Teams: Work closely with data scientists, analysts, and application developers to integrate data solutions seamlessly into their workflows, enabling advanced analytics and enhancing decision-making capabilities.

o Compliance & Security
- Ensure Data Security & Compliance: Uphold data security and privacy standards while ensuring all solutions comply with banking regulations and industry governance requirements.
- Governance Standards: Maintain rigorous governance practices for data access, privacy, and security across all automated reporting systems.

o Continuous Improvement
- Technology Advocacy: Stay informed about emerging trends in cloud data engineering, automation, and analytics. Advocate for the adoption of new technologies that can enhance system capabilities and maintain a competitive edge.
- Drive Continuous Improvement: Continuously refine processes and solutions to ensure they remain optimized for both performance and cost.

Qualification:
- Essential Skills & Experience
o Bachelor's degree in Computer Science, Engineering, Business Information System or a related field.
o 2+ years of experience in data engineering, automation, or analytics engineering, focusing on reporting and business intelligence in the financial or banking sector.
o Expertise in cloud platforms (AWS preferred) and technologies such as AWSGlue, Redshift, Lambda, and S3.
o Experience with BI/Visualization tools (e.g., Tableau, Grafana, AWS QuickSight).
o Strong understanding of data modeling principles, ETL/ELT processes, and creating data schemas for reporting and analytics.
o Proficiency in SQL, Python, or other relevant programming languages.
o Familiarity with "Zero Ops by Design" principles and automation frameworks.

- Preferred Skills
o Knowledge of financial regulations and their impact on data governance and reporting in the banking sector.
o Experience in building and maintaining "Data/AI Quality-as-a-Service" solutions for monitoring and ensuring data quality.
o Familiarity with DevOps practices and CI/CD pipelines for analytic engineering solutions.
o Experience in setting up and maintaining high-performing, scalable reporting systems.
o Understanding of advanced analytics and machine learning concepts.



"āļ—āđˆāļēāļ™āļŠāļēāļĄāļēāļĢāļ–āļ­āđˆāļēāļ™āđāļĨāļ°āļĻāļķāļāļĐāļēāļ™āđ‚āļĒāļšāļēāļĒāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļ•āļąāļ§āļ‚āļ­āļ‡āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļ—āļĩāđˆ https://krungthai.com/th/content/privacy-policy āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰ āļ˜āļ™āļēāļ„āļēāļĢāđ„āļĄāđˆāļĄāļĩāđ€āļˆāļ•āļ™āļēāļŦāļĢāļ·āļ­āļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āđƒāļ”āđ† āļ—āļĩāđˆāļˆāļ°āļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§ āļĢāļ§āļĄāļ–āļķāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡āļĻāļēāļŠāļ™āļēāđāļĨāļ°/āļŦāļĢāļ·āļ­āļŦāļĄāļđāđˆāđ‚āļĨāļŦāļīāļ• āļ‹āļķāđˆāļ‡āļ­āļēāļˆāļ›āļĢāļēāļāļāļ­āļĒāļđāđˆāđƒāļ™āļŠāļģāđ€āļ™āļēāļšāļąāļ•āļĢāļ›āļĢāļ°āļˆāļģāļ•āļąāļ§āļ›āļĢāļ°āļŠāļēāļŠāļ™āļ‚āļ­āļ‡āļ—āđˆāļēāļ™āđāļ•āđˆāļ­āļĒāđˆāļēāļ‡āđƒāļ” āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļāļĢāļļāļ“āļēāļ­āļĒāđˆāļēāļ­āļąāļ›āđ‚āļŦāļĨāļ”āđ€āļ­āļāļŠāļēāļĢāđƒāļ”āđ† āļĢāļ§āļĄāļ–āļķāļ‡āļŠāļģāđ€āļ™āļēāļšāļąāļ•āļĢāļ›āļĢāļ°āļˆāļģāļ•āļąāļ§āļ›āļĢāļ°āļŠāļēāļŠāļ™ āļŦāļĢāļ·āļ­āļāļĢāļ­āļāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§āļŦāļĢāļ·āļ­āļ‚āđ‰āļ­āļĄāļđāļĨāļ­āļ·āđˆāļ™āđƒāļ” āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡āļŦāļĢāļ·āļ­āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļŠāļģāļŦāļĢāļąāļšāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđƒāļ™āļāļēāļĢāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™āđ„āļ§āđ‰āļšāļ™āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļāļĢāļļāļ“āļēāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđƒāļŦāđ‰āđāļ™āđˆāđƒāļˆāļ§āđˆāļēāđ„āļ”āđ‰āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļĨāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§ (āļ–āđ‰āļēāļĄāļĩ) āļ­āļ­āļāļˆāļēāļāđ€āļĢāļ‹āļđāđ€āļĄāđˆāđāļĨāļ°āđ€āļ­āļāļŠāļēāļĢāļ­āļ·āđˆāļ™āđƒāļ”āļāđˆāļ­āļ™āļ—āļĩāđˆāļˆāļ°āļ­āļąāļ›āđ‚āļŦāļĨāļ”āđ€āļ­āļāļŠāļēāļĢāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ„āļ§āđ‰āļšāļ™āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒāđāļĨāđ‰āļ§āļ”āđ‰āļ§āļĒ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰ āļ˜āļ™āļēāļ„āļēāļĢāļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āđˆāļēāļ™āđ€āļžāļ·āđˆāļ­āļšāļĢāļĢāļĨāļļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđƒāļ™āļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļĢāļąāļšāļšāļļāļ„āļ„āļĨāđ€āļ‚āđ‰āļēāļ—āļģāļ‡āļēāļ™ āļŦāļĢāļ·āļ­āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļī āļĨāļąāļāļĐāļ“āļ°āļ•āđ‰āļ­āļ‡āļŦāđ‰āļēāļĄ āļŦāļĢāļ·āļ­āļžāļīāļˆāļēāļĢāļ“āļēāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļˆāļ°āđƒāļŦāđ‰āļ”āļģāļĢāļ‡āļ•āļģāđāļŦāļ™āđˆāļ‡ āļ‹āļķāđˆāļ‡āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđ€āļžāļ·āđˆāļ­āđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄ āđƒāļŠāđ‰ āļŦāļĢāļ·āļ­āđ€āļ›āļīāļ”āđ€āļœāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āđˆāļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāđ€āļ‚āđ‰āļēāļ—āļģāļŠāļąāļāļāļēāđāļĨāļ°āļāļēāļĢāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļ•āļēāļĄāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ‚āđ‰āļēāļ‡āļ•āđ‰āļ™ āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļ—āđˆāļēāļ™āđ„āļĄāđˆāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđƒāļ™āļāļēāļĢāđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄ āđƒāļŠāđ‰ āļŦāļĢāļ·āļ­āđ€āļ›āļīāļ”āđ€āļœāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄ āļŦāļĢāļ·āļ­āļĄāļĩāļāļēāļĢāļ–āļ­āļ™āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđƒāļ™āļ āļēāļĒāļŦāļĨāļąāļ‡ āļ˜āļ™āļēāļ„āļēāļĢāļ­āļēāļˆāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđ€āļžāļ·āđˆāļ­āļšāļĢāļĢāļĨāļļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ‚āđ‰āļēāļ‡āļ•āđ‰āļ™āđ„āļ”āđ‰ āđāļĨāļ°āļ­āļēāļˆ āļ—āļģāđƒāļŦāđ‰āļ—āđˆāļēāļ™āļŠāļđāļāđ€āļŠāļĩāļĒāđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļĢāļąāļšāđ€āļ‚āđ‰āļēāļ—āļģāļ‡āļēāļ™āļāļąāļšāļ˜āļ™āļēāļ„āļēāļĢ"

āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
  • āļāļēāļĢāđ€āļ‡āļīāļ™
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 1
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 2
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 3
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 4
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 5
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 6
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 7
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 8
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 9
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 10
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 11
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 12
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 13
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 14
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 15
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 16
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 17
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 18
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 19
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 20
  • āļŦāļēāļ‡āļēāļ™ āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒ 21
keyboard_arrow_right

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.krungthai.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1966
āļ„āļ°āđāļ™āļ™:4/5

āļ˜āļ™āļēāļ„āļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļāļąāļšāļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļ—āļĢāļąāļžāļĒāļēāļāļĢāļšāļļāļ„āļ„āļĨāđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡ āđ„āļĄāđˆāļ§āđˆāļēāļˆāļ°āđ€āļ›āđ‡āļ™āļāļēāļĢāļŠāļĢāļĢāļŦāļēāļšāļļāļ„āļĨāļēāļāļĢāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāļđāđ‰āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ– āļāļēāļĢāļžāļąāļ’āļ™āļēāļžāļ™āļąāļāļ‡āļēāļ™āļ”āđ‰āļ§āļĒāļŦāļĨāļąāļāļŠāļđāļ•āļĢāļ•āđˆāļēāļ‡āđ† āļ•āļĨāļ­āļ”āļˆāļ™āļˆāļąāļ”āļāļēāļĢāļāļķāļāļ­āļšāļĢāļĄ āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļŠāļ āļēāļžāđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļĩāđˆāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđ„āļ› āļ­āļĩāļāļ—āļąāđ‰āļ‡āļĒāļąāļ‡āļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāđƒāļŦāđ‰āļžāļ™āļąāļāļ‡āļēāļ™āļžāļąāļ’āļ™āļēāļ•āļ™āđ€āļ­āļ‡āļ­āļĒāļđāđˆāđ€āļŠāļĄāļ­āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āđ„āļ› āļ•āļēāļĄāļ™āđ‚āļĒāļšāļēāļĒāļāļēāļĢāđ€āļ›āđ‡āļ™āļ­āļ‡āļ„āđŒāļāļĢāđāļŦāđˆāļ‡āļāļēāļĢāđ€āļĢāļĩāļĒ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

Today, we are recruiting qualified people in various positions. Especially, Authorized teller who works at bank branches. If you are a competent and interested to be a part of the major factor for organization to meet ambition, we appreciate to review your qualifications for employment with Kungt ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: āđ€āļĨāļ‚āļ—āļĩāđˆ 35 āđāļ‚āļ§āļ‡āļ„āļĨāļ­āļ‡āđ€āļ•āļĒāđ€āļŦāļ™āļ·āļ­ āđ€āļ‚āļ•āļ§āļąāļ’āļ™āļē āļāļ—āļĄ. 10110
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ Siri DesignāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ­āļ—āļđāļ‹āļĩ āļĄāļĩāđ€āļ”āļĩāļĒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļ­āļēāļšāļēāđ€āļ—āļ āđ€āļ­āđ€āļŠāļĩāļĒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV